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Abstract—Many multiprocessor systems have 

interconnection networks as underlying topologies and an 

interconnection network is usually represented by a graph 

where nodes represent processors and links represent 

communication links between processors. No fault set can 

contain all the neighbors of any fault-free vertex in the system, 

which is called the nature diagnosability of the system. 

Diagnosability of a multiprocessor system is one important study 

topic. As a famous topology structure of interconnection 

networks, the n -dimensional  bubble-sort star graph 
nBS  has 

many good properties. In this paper, we prove that the nature 

diagnosability of 
nBS  is 4 7n   under the PMC model for 4n  , 

the nature diagnosability of 
nBS  is 4 7n   under the MM* 

model for 5n  . 

 

Index Terms—Bubble-sort star graph, Diagnosability, 

Interconnection network.  

I. INTRODUCTION 

  Many multiprocessor systems have interconnection 

networks (networks for short) as underlying topologies and a 

network is usually represented by a graph where nodes 

represent processors and links represent communication links 

between processors. Some processors may fail in the system, 

so processor fault identification plays an important role for 

reliable computing. The first step to deal with faults is to 

identify the faulty processors from the fault-free ones. The 

identification process is called the diagnosis of the system. A 

system G  is said to be t -diagnosable if all faulty processors 

can be identified without replacement, provided that the 

number of presented faults does not exceed t . The 

diagnosability ( )t G  of G  is the maximum value of t  such 

that G  is t -diagnosable. For a t -diagnosable system, 

Dahbura and Masson [1] proposed an algorithm with time 

complex 2.5( )O n , which can effectively identify the set of 

faulty processors. Several diagnosis models (e.g., Preparata, 

Metze, and Chien's (PMC) model [2], Barsi, Grandoni, and 

Maestrini's (BGM)model [3], and Maeng and Malek's (MM) 

model [4] have been proposed to investigate the 

diagnosability of multiprocessor systems. In particular, two of 

the proposed models,  the PMC model and the MM model, are 

well known and widely used. In the PMC model, the diagnosis 

of the system is achieved through two linked processors 

testing each other. In the MM model, to diagnose a system, a 

node sends the same task to two of its neighbors, and then  

compares their responses. For this reason, the MM model is  
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also said to be the comparison model. Sengupta and Dahbura 

[1] proposed a special case of the MM model, called the MM* 

model, in which each node must test its any pair of adjacent 

nodes. Numerous studies have been investigated under the 

PMC model and  MM model or MM* model.  

In the traditional diagnosis of a multiprocessor system, one 

generally assumes that any subset of processors may 

simultaneously fail. If all the neighbors of some node v  are 

faulty simultaneously, it is impossible to determine whether 

v  is faulty or fault-free. As a consequence, the diagnosability 

of the system is less than its minimum node degree. However, 

in some large-scale multiprocessor systems, we can safely 

assume that all neighbors of any node do not fail at the same 

time. Based on this assumption, in 2005, Lai et al. [5] 

introduced the restricted diagnosability of the system called 

the conditional diagnosability. They consider the situation 

that no fault set can contain all the neighbors of any node in 

the system. Since the probability that the all neighbors of a 

fault node fail and create faults is more to the probability that 

the all neighbors of a fault-free node fail and create faults in 

the system, we consider the situation that no fault set can 

contain all the neighbors of any fault-free node in the system, 

which is called the nature diagnosability of the system. In 

2012, Peng et al. [6] proposed a measure for fault diagnosis of 

the system, namely, the g-good-neighbor diagnosability 

(which is also called the g-good-neighbor conditional 

diagnosability), which requires that every fault-free node 

contains at least g fault-free neighbors. In [6], they  studied the 

g-good-neighbor diagnosability of the n-dimensional 

hypercube under the PMC model. In [7], Wang and Han  

studied the g-good-neighbor diagnosability of the 

n-dimensional hypercube under the MM* model. In 2016, 

Ren and Wang [8] gave some properties of the  

g-good-neighbor diagnosability of a multiprocessor system. 

In 2017, Wang  et al. [9] studied that the 2-good-neighbor 

diagnosability of bubble-sort star graph networks under the 

PMC model and MM* model. Yuan et al. [10,11] studied that 

the g-good-neighbor diagnosability of the k-ary n-cube 

( 3)k   under the PMC model and MM* model. As a 

favorable topology structure of interconnection networks, the 

Cayley graph nC  generated by the transposition tree n  has 

many good properties. In [12], Wang et al. studied the 

2-good-neighbor diagnosability of nC  under the PMC 

model and MM* model. In 2016, Zhang et al. [13] proposed a 

new measure for fault diagnosis of the system, namely, the 

g-extra diagnosability,  which restrains that every fault-free 

component has at least  (g+1)  fault-free nodes. In [13], they 

studied the g-extra diagnosability of the n-dimensional 

hypercube under the PMC model and MM* model. In 2016, 

Wang et al. [14] studied that the 2-extra diagnosability of the  

n -dimensional bubble-sort star graph  under the PMC model 

and MM* model. In [15], Han and Wang studied that the  
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g -extra diagnosability of folded hypercubes. In 2017, Wang 

and  Yang [16] studied the 2-good-neighbor (2-extra) 

diagnosability of alternating group graph networks under the 

PMC model and MM* model. In [17], Wang et al.  studied  

the nature diagnosability of nC  under the PMC model and 

MM* model and proved that the nature diagnosability of the 

system is less than or equal to the conditional diagnosability 

of the system. Therefore, the nature diagnosability of the 

system is nature and one important study topic. In 2016, Bai 

and Wang [18] studied the nature diagnosability of M o bius 

cubes; Hao and Wang [19] studied  the nature diagnosibility 

of augmented k-ary n-cubes; Jirimutu and Wang [20] studied  

the nature diagnosability of alternating group graph networks; 

Ma and Wang [21] studied  the nature diagnosability of 

crossed cubes; Zhao and Wang  [22] studied  the nature 

diagnosability of augmented 3-ary  n-cubes. The star graph 

and the bubble-sort graph have been proved to be an 

important viable candidate for interconnecting a 

multiprocessor system.  The feature of the star graph include 

low degree of node, small diameter, symmetry, and high 

degree of fault-tolerance. The diagnosabilities of the star 

graph under the PMC model and MM model were studied in 

[23,24]. Lin et al. [25] showed that the conditional 

diagnosability of the star graph under the comparison 

diagnosis model is 3 7.n  In this paper, the nature 

diagnosability of the n-dimensional  bubble-sort star graph 

nBS  under the PMC model and MM*  model has been 

studied. It is proved that  the nature diagnosability of nBS  is 

4 7n   under the PMC model for 4n  , the nature 

diagnosability of nBS  is 4 7n   under the MM* model for 

5n  .  

II. PRELIMINARIES 

In this section, some definitions and notations needed for 

our discussion, the bubble-sort star graph, the PMC model 

and MM* model are introduced. 

A. Definitions and Notations 

A multiprocessor system is modeled as an undirected 

simple graph ( , )G V E , whose vertices (nodes) represent 

processors and edges (links) represent communication links. 

Given a nonempty vertex subset V   of V , the subgraph 

induced by V   in G , denoted by [ ]G V  , is a graph, whose 

vertex set is V   and the edge set is the set of all the edges of 

G  with both endpoints in V  . The degree ( )Gd v  of a vertex 

v  is the number of edges incident with v . We denote  by 

( )G  the minimum degrees of vertices of G . For any vertex 

v , we define the neighborhood ( )GN v  of v  in G  to be the 

set of vertices adjacent to v . u  is called a neighbor or a 

neighbor vertex of v  for ( )Gu N v . Let S V . We use 

( )GN S  to denote the set ( ) \v S GN v S . For neighborhoods 

and degrees, we will usually omit the subscript for the graph 

when no confusion arises. A graph G  is said to be k -regular 

if for any vertex v , ( )Gd v k . Let G  be a connected graph.  

The connectivity ( )G  of a graph G  is the minimum number 

of vertices whose removal results in a disconnected graph or 

only one vertex left when G  is complete. A fault set F V  

is called a nature faulty set if | ( ) ( \ ) | 1N v V F   for every 

vertex v  in \V F . A nature cut of G  is a nature faulty set F  

such that G F  is disconnected. The minimum cardinality of 

nature cuts is said to be the nature connectivity of G , denoted 

by *( )G . For graph-theoretical terminology and notation 

not defined here we follow [26]. 

B. The PMC model and MM* model 

For the PMC model and MM* model, we follow [10]. 

In a system ( , )G V E , a faulty set F V  is called a 

conditional faulty set if it does not contain all of neighbors of 

any vertex in G . A system G  is conditional t -diagnosable if 

every two distinct conditional faulty subsets 1 2,F F V  with 

1 2| | ,| |F t F t  are distinguishable. The conditional 

diagnosability ( )ct G  of G  is the maximum number of t  

such that G  is conditional t -diagnosable. By [27], 

( ) ( )ct G t G . 

Theorem 1. ([17]) For a system ( , )G V E , 0( ) ( )t G t G   

1( ) ( )ct G t G . 

In [17], Wang et al. proved that the nature diagnosability of 

the Bubble-sort graph nB  under the PMC model is 2 3n  for 

4n  . In [28], Zhou et al. proved the conditional 

diagnosability of nB  is 4 11n  for 4n   under the PMC 

model. Therefore, 1( ) ( )n c nt B t B  when 5n   and 1( )nt B   

( )c nt B  when 4n  .  

C. The bubble-sort star graph 

The bubble-sort star graph has been known as a famous 

topology structure of interconnection networks. In this section, 

its definition and some properties are introduced. 

Let [ ] {1, 2, , }n n , and let nS  be the symmetric group on 

[ ]n . containing all permutations 1 2 np p p p  of [ ]n . It is 

well known that {(1 ) : 2 }i i n   is a generating set for nS . 

So {(1, ) : 2 } {( , 1) : 2 1}i i n i i i n        is also a 

generating set for nS . The n-dimensional bubble-sort star 

graph nBS  [29,30] is the graph with vertex set ( )nV BS  = nS  

in which two vertices u , v  are adjacent if and only if 

(1, )u v i , 2 i n  , or ( , 1)u v i i  , 2 1i n   . It is easy 

to see from the definition that nBS  is a (2 3)n  -regular 

graph on !n  vertices. 

Note that nBS  is a special Cayley graph. nBS  has the 

following useful properties. 

Proposition 1. For any integer 1n  , nBS  is (2 3)n  - 

regular, vertex transitive.  

Proposition 2. For any integer 2n  , nBS  is bipartite.  

Proposition 3. For any integer 3n  , the girth of nBS  is 4. 

Theorem 2. ([31]) Let H  be a simple connected graph with 

| ( ) | 3n V H  . If 1H  and 2H  are two different labelled 

graphs obtained by labelling H  with {1, 2, , }n , then 

1( , )nCay H S  is isomorphic to 2( , )nCay H S . 

 We can partition nBS into n  subgraphs 1 2 ,, , nBS BS BS , 

where every vertex 1 2 ( )n nu x x x V BS    has a fixed 

integer i  in the last position nx  for [ ]i n . It is obvious that 
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i

nBS  is isomorphic to 1nBS   for [ ]i n . Let ( )i

nv V BS . 

Then (1 )v n  and ( 1, )v n n  are called outside neighbors of v . 

Proposition 3. ([29]) Let i

nBS  be defined as above. Then 

there are 2( 2)!n   independent cross-edges between two 

different iH 's. 

Proposition 4. ([29]) Let nBS  be the bubble-sort star graph. 

If two vertices ,u v  are adjacent, there is no common 

neighbor vertex  of these two vertices, i.e., | ( ) ( ) | 0N u N v  . 

If two vertices ,u v  are not adjacent, there are at most three 

common neighbor vertices of these two vertices, i.e., 

| ( ) ( ) | 3N u N v  . 

Lemma 1. ([9]) The nature connectivity *

4( )BS  of the 

bubble-sort star graph 4BS  is 8. 

A connected graph G  is super nature connected if every 

minimum nature cut F  of ( )V G  isolates one edge.  If, in 

addition, G F  has two components, one of which is an edge, 

then G  is tightly | |F  super nature connected. 

Theorem 3. ([14]) For 5n  , the bubble-sort star graph nBS  

is tightly (4 8)n   super nature connected. 

Lemma 2. Let {(1), (12)}A  . If 4n  , 1 ( )
nBSF N A , 

2 ( )
nBSF A N A  , then 1| | 4 8F n  , 2| | 4 6F n  , 

1( ) 1nBS F   , and 2( ) 1nBS F   . 

Proof. By  {(1), (12)}A  ,  we have 2 2[ ]nBS A BS K  . 

Since nBS  has not 3-cycles, | ( ) | 4 8
nBSN A n  . Thus from 

calculating, we have 1| | 4 8F n  , 2 1| | | | | | 4 6F A F n    . 

Claim 1. For any 2\nx S F , 2| ( ) ) | 2 4
nBSN x F n   . 

Since nBS  is a bipartite graph,  there is no 5-cycle 

(1), ( ), , (12)( ), (12), (1)ki x lj  of nBS , where ( ), ( )ki lj   

\ (12)S . Let ((1)) \ (12)
nBSu N . If u  is adjacent to x , then 

x  is not adjacent to each of ((12)) \ (1)
nBSN . Since 

| ((1)) \ (12) | 2 4
nBSN n  , we have that x  is adjacent to at 

most (2 4)n   vertices in 1F . 

By Claim 1, 2| ( ) ) | 2 4
nBSN x F n    for any 2\nx S F . 

Therefore, 2( ) 2 3 (2 4) 1nBS F n n       . 1nBS F  has 

two components 2nBS F  and 2BS . Note that 2( ) 1BS  . 

Therefore, 1( ) 1nBS F   . 

III. THE NATURE DIAGNOSABILITY OF THE BUBBLE-SORT 

STAR GRAPH UNDER THE PMC MODEL 

In this section, we shall show the nature diagnosability of 

the bubble-sort star graph under the PMC model.  Let 1F  and 

2F  be two distinct subsets of V  for a system ( , )G V E . 

Define the symmetric difference 1 2 1 2 2 1( \ ) ( \ )F F F F F F   . 

Yuan et al. [10] presented a sufficient and necessary condition 

for a system to be nature t -diagnosable under the PMC 

model. 

Theorem 4. ([10]) A system ( , )G V E  is nature t -diagnos 

-able under the PMC model if and only if there is an edge uv  

E  with 1 2\ ( )u V F F   and 1 2v F F   for each distinct 

pair of nature faulty subsets 1F  and 2F  of V  with 1| |F t  

and 2| |F t . 

Lemma 3. A graph of minimum degree 1 has at least two 

vertices. 

The proof of Lemma 3 is trivial. 

Lemma 4.   Let 4n  . Then the nature diagnosability of the 

bubble-sort star graph nBS   under the PMC model is less than 

or equal to 4 7n  , i.e., 1( ) 4 7nt BS n  .  

Proof. Let A  be defined in Lemma 2, and let 1 ( )
nBSF N A , 

2 ( )
nBSF A N A  . By Lemma 2, 1| | 4 8F n  , 2| | 4 6F n  , 

1( ) 1nBS F    and 2( ) 1nBS F   . Therefore, 1F  and 2F  

are both nature faulty sets of nBS  with 1| | 4 8F n   and 

2| | 4 6F n  . Since 1 2A F F   and 1 2( )
nBSN A F F  , 

there is no edge of nBS  between 1 2( ) \ ( )nV BS F F  and 

1 2F F . By Theorem 4, we can deduce that nBS  is not nature 

(4 6)n  -diagnosable under the PMC model. Hence, by the 

definition of nature diagnosability, we conclude that the 

nature diagnosability of nBS  is less than 4 6n  , i.e., 

1( ) 4 7nt BS n  . 

Lemma 5.  Let 4n  . Then the nature diagnosability of the 

bubble-sort star graph nBS  under the PMC model is more 

than or equal to 4 7n  , i.e., 1( ) 4 7nt BS n  . 

Proof.  By the definition of nature diagnosability, it is 

sufficient to show that nBS  is nature (4 7)n  -diagnosable. 

By Theorem 4, to prove nBS  is nature (4 7)n  -diagnosable, 

it is equivalent to prove that there is an edge ( )nuv E BS  

with 1 2( ) \ ( )nu V BS F F   and 1 2v F F   for each distinct 

pair of nature faulty subsets 1F  and 2F  of ( )nV BS  with 

1| | 4 7F n   and 2| | 4 7F n  . 

We prove this statement by contradiction. Suppose that 

there are two distinct nature faulty subsets 1F  and 2F  of 

( )nV BS  with 1| | 4 7F n   and 2| | 4 7F n  , but the vertex 

set pair 1 2( , )F F  is not satisfied with the condition in Theorem 

4, i.e., there are no edges between 1 2( ) \ ( )nV BS F F  and 

1 2F F . Without loss of generality, assume that 2 1\F F   . 

Suppose 1 2( )nV BS F F  . By the definition of nBS , 

1 2| | | | !nF F S n   . It is obvious that ! 8 14n n   for 4n  . 

Since 4n  , we have that 1 2 1! | ( ) | | | | |nn V BS F F F      

2 1 2 1 2| | | | | | | | 2(4 7) 8 14F F F F F n n         , a 

contradiction. Therefore, 1 2( )nV BS F F  . 

Since there are no edges between 1 2( ) \ ( )nV BS F F  and 

1 2F F , and 1F  is a nature faulty set, 1nBS F  has two parts 

1 2nBS F F   and 2 1[ \ ]nBS F F  (for convenience). Thus, 

1 2( ) 1nBS F F     and 2 1( [ \ ]) 1nBS F F  . Similarly, 

1 2( [ \ ]) 1nBS F F   when 1 2\F F   . Therefore, 1 2F F  is 

also a nature faulty set. When 1 2\F F   , 1 2 1F F F   is 

also a nature faulty set.Since there are no edges between 

1 2( )nV BS F F   and 1 2F F , 1 2F F  is a nature cut. Since 

4n  , by Theorem 3,  1 2| | 4 8F F n   . By Lemma 3, 

2 1| \ | 2F F  . Therefore, 2 2 1 1 2| | | \ | | | 2 4F F F F F n       
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8 4 6n  , which contradicts with that 2| | 4 7F n  . So 

nBS  is nature (4 7)n  -diagnosable. By the definition of 

1( )nt BS , 1( ) 4 7nt BS n  . 

Combining Lemmas 4 and 5, we have the following 

theorem. 

Theorem 5. Let 4n  . Then the nature diagnosability of the 

bubble-sort star graph nBS  under the PMC model is 4 7n  . 

IV. THE NATURE DIAGNOSABILITY OF THE BUBBLE-SORT 

STAR GRAPH nBS  UNDER THE MM* MODEL 

Before discussing the nature diagnosability of the 

bubble-sort star graph nBS  under the MM* model, we first 

give an existing result. 

Theorem 6. ([1,10]) A system ( , )G V E  is nature t -diagn- 

osable under the MM* model if and only if each distinct pair 

of nature faulty subsets 1F  and 2F  of V  with 1| |F t  and 

2| |F t  satisfies one of the following conditions. 

(1) There are two vertices 1 2, \ ( )u w V F F   and there is a 

vertex 1 2F F  such that uw E  and vw E . 

(2) There are two vertices 1 2, \u v F F  and there is a vertex 

1 2\ ( )w V F F   such that uw E  and vw E . 

(3) There are two vertices 2 1, \u v F F  and there is a vertex 

1 2\ ( )w V F F   such that uw E  and vw E . 

Lemma 6. Let 4n  . Then the nature diagnosability of the 

bubble-sort star graph nBS   under the MM* model is less 

than or equal to 4 7n  , i.e., 1( ) 4 7nt BS n  . 

Proof. Let A , 1F  and 2F  be defined in Lemma 2. By 

Lemma 2, 1| | 4 8F n  , 2| | 4 6F n  , 1( ) 1nBS F    and 

2( ) 1nBS F   . So both 1F  and 2F  are nature faulty sets. 

By the definitions of 1F  and 2F , 1 2F F A  . Note 1 2\F F   

 , 2 1\F F A  and 1 2( ( ) \ ( ))nV BS F F A   .  

Therefore, both 1F  and 2F  are not satisfied with any one 

condition in Theorem 6, and nBS  is not nature 

(3 6)n  -diagnosable. Hence, 1( ) 4 7nt BS n  . The proof is 

complete. 

Lemma 7.  Let 5n  . Then the nature diagnosability of the 

bubble-sort star graph nBS  under the MM* model is more 

than or equal to 4 7n  , i.e., 1( ) 4 7nt BS n  . 

Proof.  By the definition of nature diagnosability, it is 

sufficient to show that nBS  is nature (4 7)n  -diagnosable. 

By Theorem 6, suppose, on the contrary, that there are two 

distinct  nature faulty subsets 1F  and 2F  of nBS  with 

1| | 4 7F n   and 2| | 4 7F n  , but the vertex set pair 

1 2( , )F F  is not satisfied with any one condition in Theorem 6. 

Without loss of generality, assume that 2 1\ .F F    Similarly 

to the discussion on 1 2( )nV BS F F   in Lemma 5,  we can 

deduce that 1 2( )nV BS F F  . Therefore, 1 2( )nV BS F F  . 

Claim I. 1 2nBS F F   has no isolated vertex. 

Suppose, on the contrary, that 1 2nBS F F   has at least 

one isolated vertex w . Since 1F  is a nature  faulty set, there is 

a vertex 2 1\u F F  such that u  is adjacent to w . Since the 

vertex set pair 1 2( , )F F  is not satisfied with any one condition 

in Theorem 6, there is at most one vertex 2 1\u F F  such that 

u  is adjacent to w . Thus, there is just a vertex u  2 1\F F  

such that u  is adjacent to w . Similarly, we can deduce that 

there is just a vertex 1 2\v F F  such that v  is adjacent to w  

when 1 2\F F   . Let 1 2\ ( )nW S F F   be the set of 

isolated vertices in 1 2[ \ ( )]n nBS S F F , and let H  be the 

subgraph induced by the vertex set 1 2\ ( )nS F F W  . Then 

for any w W , there are (2 5)n   neighbors in 1 2F F . 

Since  2| | 4 7F n  , we have 

1 2 1 2[( ) ]| ( ) | | | (2 5) ( ) 
n nBS F F W v F F BS

w W

N w W n d v   



     

1 2 2| | (2 3) (| | 1)(2 3) (4 8)(2 3)F F n F n n n          

28 28 24n n  . It follows that 
28 28 24

| | 4 3
2 5

n n
W n

n

 
  


 

for 5n  . Note 1 2 1 2 1 2| | | | | | | |F F F F F F       

2(4 7) (2 5) 6 9n n n     . Suppose ( )V H   . Then 

1 2! | | | ( ) | | | | | 6 9 4 3 10n nn S V BS F F W n n n         

11 . This is a contradiction to 5n  . So ( )V H   . 

Since the vertex set pair  1 2( , )F F  is not satisfied with the 

condition (1) of Theorem 6, and any vertex of ( )V H  is not 

isolated in H , we induce that there is no edge between 

( )V H  and 1 2F F . Thus, 1 2F F  is a vertex cut of nBS  and 

1 2( ( )) 1nBS F F    , i.e., 1 2F F  is a nature cut of nBS . 

By Theorem 3, 1 2| | 4 8F F n   . Because 1| | 4 7F n  , 

2| | 4 7F n  , and neither 1 2\F F  nor 2 1\F F  is empty, we 

have 1 2 2 1| \ | | \ | 1F F F F  . Let 1 2 1\ { }F F v  and 2 1\F F   

2{ }v . Then for any vertex w W , w  are adjacent to 1v  and 

2v . According to Proposition 5, there are at most three 

common neighbors for any pair of vertices in nBS , it follows 

that there are at most three isolated vertices in 1 2nBS F F  , 

i.e., | | 3W  . 

Suppose that there is exactly one isolated vertex v  in 

1 2nBS F F  .  

Let 1v  and 2v  be adjacent to v . Then 1 2( ) \{ , }
nBSN v v v  

1 2F F  . Since nBS  contains no triangle, it follows that 

1 1 2( ) \{ }
nBSN v v F F  ; 2 1 2( ) \{ }

nBSN v v F F  ; 

1 2 1[ ( ) \{ , }] [ ( ) \{ }]
n nBS BSN v v v N v v   and 

1 2 2[ ( ) \{ , }] [ ( ) \{ }]
n nBS BSN v v v N v v  . By Proposition 5, 

1 2| [ ( ) \{ }] [ ( ) \{ }] | 2
n nBS BSN v v N v v  . Thus, 1 2| |F F   

1 2 1 2| ( ) \{ , } | | ( ) \{ } | | ( ) \{ } | (2
n n nBS BS BSN v v v N v v N v v n   

5) (2 4) (2 4) 2 6 15n n n       . It follows that 2| |F   

2 1 1 2| \ | | | 1 6 15 6 14 4 7 ( 5)F F F F n n n n          , 

which contradicts  2| | 4 7F n  . 

Suppose that there are exactly two isolated vertices v  and 

w  in 1 2nBS F F  . 

Let 1v  and 2v  be adjacent to v  and w , respectively. Then 

1 2 1 2( ) \{ , }
nBSN v v v F F  . Since nBS  contains no triangle, 

it follows that 1 1 2( ) \{ , }
nBSN v v w F F  , 2( ) \{ , }

nBSN v v w   
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1 2F F  , 1 2 1[ ( ) \{ , }] [ ( ) \{ , }]
n nBS BSN v v v N v v w  and 

1 2 2[ ( ) \{ , }] [ ( ) \{ , }]
n nBS BSN v v v N v v w  . By Proposition 5, 

there are at most two common neighbors for any pair of 

vertices in nBS . Thus, it follows that 1| [ ( ) \{ , }]
nBSN v v w   

2[ ( ) \{ , }] | 1
nBSN v v w  . Thus, 1 2 1 2| | | ( ) \{ , } |

nBSF F N v v v   

1 2 1 2| ( ) \{ , } | | ( ) \{ , } | | ( ) \{ , } |
n n nBS BS BSN w v v N v v w N v v w  

(2 5) (2 5) 1 (2 5) (2 5) 1 8 22n n n n n            . It 

follows that 2 2 1 1 2| | | \ | | | 1 8 22 8 21F F F F F n n         

4 7 ( 5)n n   , which contradicts  2| | 4 7F n  . 

Suppose that there are exactly three isolated vertices ,u v  

and w  in 1 2nBS F F  .  

Let 1v  and 2v  be adjacent to ,u v  and w , respectively. 

Then 1 2 1 2( ) \{ , }
nBSN v v v F F  . Since nBS  contains no 

triangle, it follows that 1( ) \{ , , }
nBSN v u v w  1 2F F  , 

2 1 2( ) \{ , , }
nBSN v u v w F F  , 1 2 1[ ( ) \{ , }] [ ( )

n nBS BSN v v v N v  

\{ , , }]u v w   and 1 2 2[ ( ) \{ , }] [ ( ) \{ , , }]
n nBS BSN v v v N v u v w  

 . By Proposition 5, there are at most three common 

neighbors for any pair of vertices in nBS . Thus, it follows that 

1 2| [ ( ) \{ , , }] [ ( ) \{ , , }] | 0
n nBS BSN v u v w N v u v w  . Thus, 

1 2 1 2 1 2| | | ( ) \{ , } | | ( ) \{ , } | | ( )
n n nBS BS BSF F N u v v N v v v N w   

1 2 1 2\{ , } | | ( ) \{ , , } | | ( ) \{ , , } | (2
n nBS BSv v N v u v w N v u v w n   

5) (2 5) (2 5) (2 6) (2 6)n n n n        3 10 30n   . It 

follows that 2 2 1 1 2| | | \ | | | 1 10 30F F F F F n        

10 29 4 7 ( 5)n n n    , which contradicts  2| | 4 7F n  .  

Suppose 1 2\F F   . Then 1 2F F . Since 2F  is a nature 

faulty set, 2 1 2n nBS F BS F F     has no isolated vertex. 

The proof of Claim I is complete. 

Let 1 2( ) \ ( )nu V BS F F  . By Claim I, u  has at least one 

neighbor in 1 2nBS F F  . Since the vertex set pair 1 2( , )F F  

is not satisfied with any one condition in Theorem 6, by the 

condition (1) of Theorem 6, for any pair of adjacent vertices 

1 2, ( ) \ ( )nu w V BS F F  , there is no vertex 1 2v F F   such 

that ( )nuw E BS  and ( )nvw E BS . It follows that u  has 

no neighbor in 1 2F F . By the arbitrariness of u , there is no 

edge between 1 2( ) \ ( )nV BS F F  and 1 2F F . Since 

2 1\F F    and 1F  is a nature faulty set, 2 1([ \ ]) 1
nBS F F  . 

By Lemma 3, 2 1| \ | 2F F  . Since both  1F  and 2F  are nature 

faulty sets, and there is no edge between 1 2( ) \ ( )nV BS F F  

and 1 2F F , 1 2F F  is a nature cut of nBS . By Theorem 3, 

we have 1 2| | 4 8F F n   . Therefore, 2 2 1 1| | | \ | |F F F F    

2 | 2 (4 8) 4 6F n n      , which contradicts  2| | 4 7F n  .  

Therefore, nBS  is nature (4 7)n  -diagnosable and 

1( ) 4 7nt BS n  .  The proof is complete. 

Combining Lemmas 6 and 7, we have the following 

theorem. 

Theorem 7.  Let 5n  . Then the nature diagnosability of the 

bubble-sort star graph nBS  under the MM* model is 4 7n  . 
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