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Abstract—Many multiprocessor systems have 

interconnection networks as underlying topologies and an 
interconnection network is usually represented by a graph 
where nodes represent processors and links represent 
communication links between processors. No fault set can 
contain all the neighbors of any fault-free vertex in the system, 
which is called the nature diagnosability of the system. 
Diagnosability of a multiprocessor system is one important 
study topic. As a famous topology structure of interconnection 
networks, the n -dimensional  bubble-sort star graph nBS  has 
many good properties. In this paper, we prove that the nature 
diagnosability of nBS  is 4 7n −  under the PMC model for 

4n ≥ , the nature diagnosability of nBS  is 4 7n −  under the 
MM* model for 5n ≥ . 
 

Index Terms—Bubble-sort star graph, Diagnosability, 
Interconnection network.  

I. INTRODUCTION 
  Many multiprocessor systems have interconnection 

networks (networks for short) as underlying topologies and 
a network is usually represented by a graph where nodes 
represent processors and links represent communication 
links between processors. Some processors may fail in the 
system, so processor fault identification plays an important 
role for reliable computing. The first step to deal with faults 
is to identify the faulty processors from the fault-free ones. 
The identification process is called the diagnosis of the 
system. A system G  is said to be t -diagnosable if all faulty 
processors can be identified without replacement, provided 
that the number of presented faults does not exceed t . The 
diagnosability ( )t G  of G  is the maximum value of t  such 
that G  is t -diagnosable. For a t -diagnosable system, 
Dahbura and Masson [1] proposed an algorithm with time 
complex 2.5( )O n , which can effectively identify the set of 
faulty processors. Several diagnosis models (e.g., Preparata, 
Metze, and Chien's (PMC) model [2], Barsi, Grandoni, and 
Maestrini's (BGM)model [3], and Maeng and Malek's (MM) 
model [4] have been proposed to investigate the 
diagnosability of multiprocessor systems. In particular, two 
of the proposed models,  the PMC model and the MM 
model, are well known and widely used. In the PMC model, 
the diagnosis of the system is achieved through two linked 
processors testing each other. In the MM model, to diagnose 
a system, a node sends the same task to two of its neighbors, 
and then compares their responses. For this reason, the MM 
model is also said to be the comparison model. 
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Sengupta and Dahbura [1] proposed a special case of the 
MM model, called the MM* model, in which each node 
must test its any pair of adjacent nodes. Numerous studies 
have been investigated under the PMC model and MM 
model or MM* model.  

In the traditional diagnosis of a multiprocessor system, 
one generally assumes that any subset of processors may 
simultaneously fail. If all the neighbors of some node v  are 
faulty simultaneously, it is impossible to determine whether 
v  is faulty or fault-free. As a consequence, the 
diagnosability of the system is less than its minimum node 
degree. However, in some large-scale multiprocessor 
systems, we can safely assume that all neighbors of any 
node do not fail at the same time. Based on this assumption, 
in 2005, Lai et al. [5] introduced the restricted diagnosability 
of the system called the conditional diagnosability. They 
consider the situation that no fault set can contain all the 
neighbors of any node in the system. Since the probability 
that the all neighbors of a fault node fail and create faults is 
more to the probability that the all neighbors of a fault-free 
node fail and create faults in the system, we consider the 
situation that no fault set can contain all the neighbors of 
any fault-free node in the system, which is called the nature 
diagnosability of the system. In 2012, Peng et al. [6] 
proposed a measure for fault diagnosis of the system, 
namely, the g-good-neighbor diagnosability (which is also 
called the g-good-neighbor conditional diagnosability), 
which requires that every fault-free node contains at least g 
fault-free neighbors. In [6], they  studied the 
g-good-neighbor diagnosability of the n-dimensional 
hypercube under the PMC model. In [7], Wang and Han  
studied the g-good-neighbor diagnosability of the 
n-dimensional hypercube under the MM* model. In 2016, 
Ren and Wang [8] gave some properties of the  
g-good-neighbor diagnosability of a multiprocessor system. 
In 2017, Wang  et al. [9] studied that the 2-good-neighbor 
diagnosability of bubble-sort star graph networks under the 
PMC model and MM* model. Yuan et al. [10,11] studied 
that the g-good-neighbor diagnosability of the k-ary n-cube 
( 3)k ≥  under the PMC model and MM* model. As a 
favorable topology structure of interconnection networks, 
the Cayley graph nCΓ  generated by the transposition tree 

nΓ  has many good properties. In [12], Wang et al. studied 
the 2-good-neighbor diagnosability of nCΓ  under the PMC 
model and MM* model. In 2016, Zhang et al. [13] proposed 
a new measure for fault diagnosis of the system, namely, the 
g-extra diagnosability,  which restrains that every fault-free 
component has at least  (g+1)  fault-free nodes. In [13], they 
studied the g-extra diagnosability of the n-dimensional 
hypercube under the PMC model and MM* model. In 2016, 
Wang et al. [14] studied that the 2-extra diagnosability of 
the  n -dimensional bubble-sort star graph  under the PMC 
model and MM* model. In [15], Han and Wang studied that 
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the  g -extra diagnosability of folded hypercubes. In 2017, 
Wang and  Yang [16] studied the 2-good-neighbor (2-extra) 
diagnosability of alternating group graph networks under the 
PMC model and MM* model. In [17], Wang et al.  studied  
the nature diagnosability of nCΓ  under the PMC model and 
MM* model and proved that the nature diagnosability of the 
system is less than or equal to the conditional diagnosability 
of the system. Therefore, the nature diagnosability of the 
system is nature and one important study topic. In 2016, Bai 
and Wang [18] studied the nature diagnosability of M o&&bius 
cubes; Hao and Wang [19] studied  the nature diagnosibility 
of augmented k-ary n-cubes; Jirimutu and Wang [20] 
studied  the nature diagnosability of alternating group graph 
networks; Ma and Wang [21] studied  the nature 
diagnosability of crossed cubes; Zhao and Wang  [22] 
studied  the nature diagnosability of augmented 3-ary  
n-cubes. The star graph and the bubble-sort graph have been 
proved to be an important viable candidate for 
interconnecting a multiprocessor system.  The feature of the 
star graph include low degree of node, small diameter, 
symmetry, and high degree of fault-tolerance. The 
diagnosabilities of the star graph under the PMC model and 
MM model were studied in [23,24]. Lin et al. [25] showed 
that the conditional diagnosability of the star graph under 
the comparison diagnosis model is 3 7.n −  In this paper, the 
nature diagnosability of the n-dimensional  bubble-sort star 
graph nBS  under the PMC model and MM*  model has 
been studied. It is proved that  the nature diagnosability of 

nBS  is 4 7n −  under the PMC model for 4n ≥ , the nature 
diagnosability of nBS  is 4 7n −  under the MM* model for 

5n ≥ .  

II. PRELIMINARIES 
In this section, some definitions and notations needed for 

our discussion, the bubble-sort star graph, the PMC model 
and MM* model are introduced. 

A. Definitions and Notations 
A multiprocessor system is modeled as an undirected 

simple graph ( , )G V E= , whose vertices (nodes) represent 
processors and edges (links) represent communication links. 
Given a nonempty vertex subset V ʹ  of V , the subgraph 
induced by V ʹ  in G , denoted by [ ]G V ʹ , is a graph, whose 
vertex set is V ʹ  and the edge set is the set of all the edges of 
G  with both endpoints in V ʹ . The degree ( )Gd v  of a vertex 
v  is the number of edges incident with v . We denote  by 
( )Gδ  the minimum degrees of vertices of G . For any 

vertex v , we define the neighborhood ( )GN v  of v  in G  to 
be the set of vertices adjacent to v . u  is called a neighbor 
or a neighbor vertex of v  for ( )Gu N v∈ . Let S V⊆ . We 
use ( )GN S  to denote the set ( ) \v S GN v S∈∪ . For 
neighborhoods and degrees, we will usually omit the 
subscript for the graph when no confusion arises. A graph 
G  is said to be k -regular if for any vertex v , ( )Gd v k= . 
Let G  be a connected graph.  The connectivity ( )Gκ  of a 
graph G  is the minimum number of vertices whose removal 
results in a disconnected graph or only one vertex left when 
G  is complete. A fault set F V⊆  is called a nature faulty 

set if | ( ) ( \ ) | 1N v V F∩ ≥  for every vertex v  in \V F . A 
nature cut of G  is a nature faulty set F  such that G F−  is 
disconnected. The minimum cardinality of nature cuts is 
said to be the nature connectivity of G , denoted by * ( )Gκ . 
For graph-theoretical terminology and notation not defined 
here we follow [26]. 

B. The PMC model and MM* model 
For the PMC model and MM* model, we follow [10]. 
In a system ( , )G V E= , a faulty set F V⊆  is called a 

conditional faulty set if it does not contain all of neighbors 
of any vertex in G . A system G  is conditional 
t -diagnosable if every two distinct conditional faulty 
subsets 1 2,F F V∈  with 1 2| | ,| |F t F t≤ ≤ are distinguishable. 
The conditional diagnosability ( )ct G  of G  is the maximum 
number of t  such that G  is conditional t -diagnosable. By 
[27], ( ) ( )ct G t G≥ . 
Theorem 1. ([17]) For a system ( , )G V E= , 0( ) ( )t G t G= ≤  

1( ) ( )ct G t G≤ . 
In [17], Wang et al. proved that the nature diagnosability 

of the Bubble-sort graph nB  under the PMC model is 2 3n −  
for 4n ≥ . In [28], Zhou et al. proved the conditional 
diagnosability of nB  is 4 11n −  for 4n ≥  under the PMC 
model. Therefore, 1( ) ( )n c nt B t B<  when 5n ≥  and 1( )nt B =  
( )c nt B  when 4n = .  

C. The bubble-sort star graph 
The bubble-sort star graph has been known as a famous 

topology structure of interconnection networks. In this 
section, its definition and some properties are introduced. 

Let [ ] {1,2, , }n n= L , and let nS  be the symmetric group 
on [ ]n . containing all permutations 1 2 np p p p= L  of [ ]n . 
It is well known that {(1 ) : 2 }i i n≤ ≤  is a generating set for 

nS . So {(1, ) : 2 } {( , 1) : 2 1}i i n i i i n≤ ≤ ∪ + ≤ ≤ −  is also a 
generating set for nS . The n-dimensional bubble-sort star 
graph nBS  [29,30] is the graph with vertex set ( )nV BS  = 

nS  in which two vertices u , v  are adjacent if and only if 
(1, )u v i= , 2 i n≤ ≤ , or ( , 1)u v i i= + , 2 1i n≤ ≤ − . It is 

easy to see from the definition that nBS  is a 
(2 3)n− -regular graph on !n  vertices. 

Note that nBS  is a special Cayley graph. nBS  has the 
following useful properties. 
Proposition 1. For any integer 1n ≥ , nBS  is (2 3)n− - 
regular, vertex transitive.  
Proposition 2. For any integer 2n ≥ , nBS  is bipartite.  
Proposition 3. For any integer 3n ≥ , the girth of nBS  is 4. 
Theorem 2. ([31]) Let H  be a simple connected graph with 
| ( ) | 3n V H= ≥ . If 1H  and 2H  are two different labelled 

graphs obtained by labelling H  with {1,2, , }nL , then 
1( , )nCay H S  is isomorphic to 2( , )nCay H S . 

 We can partition nBS into n  subgraphs 1 2 ,, , nBS BS BS… , 
where every vertex 1 2 ( )n nu x x x V BS= … ∈  has a fixed 
integer i  in the last position nx  for [ ]i n∈ . It is obvious 
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that i
nBS  is isomorphic to 1nBS −  for [ ]i n∈ . Let 

( )inv V BS∈ . Then (1 )v n  and ( 1, )v n n−  are called outside 
neighbors of v . 
Proposition 3. ([29]) Let i

nBS  be defined as above. Then 
there are 2( 2)!n−  independent cross-edges between two 
different iH 's. 
Proposition 4. ([29]) Let nBS  be the bubble-sort star graph. 
If two vertices ,u v  are adjacent, there is no common 
neighbor vertex  of these two vertices, i.e., 
| ( ) ( ) | 0N u N v∩ = . If two vertices ,u v  are not adjacent, 
there are at most three common neighbor vertices of these 
two vertices, i.e., | ( ) ( ) | 3N u N v∩ ≤ . 
Lemma 1. ([9]) The nature connectivity *

4( )BSκ  of the 
bubble-sort star graph 4BS  is 8. 

A connected graph G  is super nature connected if every 
minimum nature cut F  of ( )V G  isolates one edge.  If, in 
addition, G F−  has two components, one of which is an 
edge, then G  is tightly | |F  super nature connected. 
Theorem 3. ([14]) For 5n ≥ , the bubble-sort star graph 

nBS  is tightly (4 8)n−  super nature connected. 
Lemma 2. Let {(1),(12)}A = . If 4n ≥ , 1 ( )

nBS
F N A= , 

2 ( )
nBS

F A N A= ∪ , then 1| | 4 8F n= − , 2| | 4 6F n= − , 

1( ) 1nBS Fδ − ≥ , and 2( ) 1nBS Fδ − ≥ . 
Proof. By  {(1),(12)}A = ,  we have 2 2[ ]nBS A BS K≅ = . 
Since nBS  has not 3-cycles, | ( ) | 4 8

nBS
N A n= − . Thus from 

calculating, we have 1| | 4 8F n= − , 2 1| | | | | | 4 6F A F n= + = − . 
Claim 1. For any 2\nx S F∈ , 2| ( ) ) | 2 4

nBS
N x F n∩ ≤ − . 

Since nBS  is a bipartite graph,  there is no 5-cycle 
(1),( ), ,(12)( ),(12),(1)ki x lj  of nBS , where ( ),( )ki lj ∈ 
\ (12)S . Let ((1)) \ (12)

nBS
u N∈ . If u  is adjacent to x , then 

x  is not adjacent to each of ((12)) \ (1)
nBS

N . Since 

| ((1)) \ (12) | 2 4
nBS

N n= − , we have that x  is adjacent to at 

most (2 4)n−  vertices in 1F . 
By Claim 1, 2| ( ) ) | 2 4

nBS
N x F n∩ ≤ −  for any 2\nx S F∈ . 

Therefore, 2( ) 2 3 (2 4) 1nBS F n nδ − ≥ − − − = . 1nBS F−  has 
two components 2nBS F−  and 2BS . Note that 2( ) 1BSδ = . 
Therefore, 1( ) 1nBS Fδ − ≥ . 

III. THE NATURE DIAGNOSABILITY OF THE BUBBLE-SORT 
STAR GRAPH UNDER THE PMC MODEL 

In this section, we shall show the nature diagnosability of 
the bubble-sort star graph under the PMC model.  Let 1F  
and 2F  be two distinct subsets of V  for a system 

( , )G V E= . Define the symmetric difference 

1 2 1 2 2 1( \ ) ( \ )F F F F F FΔ = ∪ . Yuan et al. [10] presented a 
sufficient and necessary condition for a system to be nature 
t -diagnosable under the PMC model. 
Theorem 4. ([10]) A system ( , )G V E=  is nature 
t -diagnos -able under the PMC model if and only if there is 
an edge uv  E∈  with 1 2\ ( )u V F F∈ ∪  and 1 2v F F∈ Δ  for 

each distinct pair of nature faulty subsets 1F  and 2F  of V  
with 1| |F t≤  and 2| |F t≤ . 
Lemma 3. A graph of minimum degree 1 has at least two 
vertices. 

The proof of Lemma 3 is trivial. 
Lemma 4.   Let 4n ≥ . Then the nature diagnosability of the 
bubble-sort star graph nBS   under the PMC model is less 
than or equal to 4 7n − , i.e., 1( ) 4 7nt BS n≤ − .  
Proof. Let A  be defined in Lemma 2, and let 1 ( )

nBS
F N A= , 

2 ( )
nBS

F A N A= ∪ . By Lemma 2, 1| | 4 8F n= − , 

2| | 4 6F n= − , 1( ) 1nBS Fδ − ≥  and 2( ) 1nBS Fδ − ≥ . 
Therefore, 1F  and 2F  are both nature faulty sets of nBS  
with 1| | 4 8F n= −  and 2| | 4 6F n= − . Since 1 2A F F= Δ  and 

1 2( )
nBS

N A F F= ⊂ , there is no edge of nBS  between 

1 2( ) \ ( )nV BS F F∪  and 1 2F FΔ . By Theorem 4, we can 
deduce that nBS  is not nature (4 6)n− -diagnosable under 
the PMC model. Hence, by the definition of nature 
diagnosability, we conclude that the nature diagnosability of 

nBS  is less than 4 6n − , i.e., 1( ) 4 7nt BS n≤ − . 
Lemma 5.  Let 4n ≥ . Then the nature diagnosability of the 
bubble-sort star graph nBS  under the PMC model is more 
than or equal to 4 7n − , i.e., 1( ) 4 7nt BS n≥ − . 
Proof.  By the definition of nature diagnosability, it is 
sufficient to show that nBS  is nature (4 7)n− -diagnosable. 
By Theorem 4, to prove nBS  is nature (4 7)n− -diagnosable, 
it is equivalent to prove that there is an edge ( )nuv E BS∈  
with 1 2( ) \ ( )nu V BS F F∈ ∪  and 1 2v F F∈ Δ  for each distinct 
pair of nature faulty subsets 1F  and 2F  of ( )nV BS  with 

1| | 4 7F n≤ −  and 2| | 4 7F n≤ − . 
We prove this statement by contradiction. Suppose that 

there are two distinct nature faulty subsets 1F  and 2F  of 
( )nV BS  with 1| | 4 7F n≤ −  and 2| | 4 7F n≤ − , but the vertex 

set pair 1 2( , )F F  is not satisfied with the condition in 
Theorem 4, i.e., there are no edges between 

1 2( ) \ ( )nV BS F F∪  and 1 2F FΔ . Without loss of generality, 
assume that 2 1\F F ≠∅ . Suppose 1 2( )nV BS F F= ∪ . By the 
definition of nBS , 1 2| | | | !nF F S n∪ = = . It is obvious that 
! 8 14n n> −  for 4n ≥ . Since 4n ≥ , we have that 

1 2 1! | ( ) | | | | |nn V BS F F F= = ∪ = +  

2 1 2 1 2| | | | | | | | 2(4 7) 8 14F F F F F n n+ − ∩ ≤ + ≤ − = − , a 
contradiction. Therefore, 1 2( )nV BS F F≠ ∪ . 

Since there are no edges between 1 2( ) \ ( )nV BS F F∪  and 

1 2F FΔ , and 1F  is a nature faulty set, 1nBS F−  has two parts 

1 2nBS F F− −  and 2 1[ \ ]nBS F F  (for convenience). Thus, 

1 2( ) 1nBS F Fδ − − ≥  and 2 1( [ \ ]) 1nBS F Fδ ≥ . Similarly, 

1 2( [ \ ]) 1nBS F Fδ ≥  when 1 2\F F =∅/ . Therefore, 1 2F F∩  is 
also a nature faulty set. When 1 2\F F =∅ , 1 2 1F F F∩ =  is 
also a nature faulty set.Since there are no edges between 

1 2( )nV BS F F− −  and 1 2F FΔ , 1 2F F∩  is a nature cut. Since 
4n ≥ , by Theorem 3,  1 2| | 4 8F F n∩ ≥ − . By Lemma 3, 

2 1| \ | 2F F ≥ . Therefore, 2 2 1 1 2| | | \ | | | 2 4F F F F F n= + ∩ ≥ + −  
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8 4 6n= − , which contradicts with that 2| | 4 7F n≤ − . So 

nBS  is nature (4 7)n− -diagnosable. By the definition of 

1( )nt BS , 1( ) 4 7nt BS n≥ − . 
Combining Lemmas 4 and 5, we have the following 

theorem. 
Theorem 5. Let 4n ≥ . Then the nature diagnosability of 
the bubble-sort star graph nBS  under the PMC model is 
4 7n − . 

IV. THE NATURE DIAGNOSABILITY OF THE BUBBLE-SORT 
STAR GRAPH nBS  UNDER THE MM* MODEL 

Before discussing the nature diagnosability of the 
bubble-sort star graph nBS  under the MM* model, we first 
give an existing result. 
Theorem 6. ([1,10]) A system ( , )G V E=  is nature 
t -diagn- osable under the MM* model if and only if each 
distinct pair of nature faulty subsets 1F  and 2F  of V  with 

1| |F t≤  and 2| |F t≤  satisfies one of the following 
conditions. 
(1) There are two vertices 1 2, \ ( )u w V F F∈ ∪  and there is a 
vertex 1 2F FΔ  such that uw E∈  and vw E∈ . 
(2) There are two vertices 1 2, \u v F F∈  and there is a vertex 

1 2\ ( )w V F F∈ ∪  such that uw E∈  and vw E∈ . 
(3) There are two vertices 2 1, \u v F F∈  and there is a vertex 

1 2\ ( )w V F F∈ ∪  such that uw E∈  and vw E∈ . 
Lemma 6. Let 4n ≥ . Then the nature diagnosability of the 
bubble-sort star graph nBS   under the MM* model is less 
than or equal to 4 7n − , i.e., 1( ) 4 7nt BS n≤ − . 
Proof. Let A , 1F  and 2F  be defined in Lemma 2. By 
Lemma 2, 1| | 4 8F n= − , 2| | 4 6F n= − , 1( ) 1nBS Fδ − ≥  and 

2( ) 1nBS Fδ − ≥ . So both 1F  and 2F  are nature faulty sets. 
By the definitions of 1F  and 2F , 1 2F F AΔ = . Note 1 2\F F =  
∅ , 2 1\F F A=  and 1 2( ( ) \ ( ))nV BS F F A∪ ∩ =∅ .  
Therefore, both 1F  and 2F  are not satisfied with any one 
condition in Theorem 6, and nBS  is not nature 
(3 6)n− -diagnosable. Hence, 1( ) 4 7nt BS n≤ − . The proof is 
complete. 
Lemma 7.  Let 5n ≥ . Then the nature diagnosability of the 
bubble-sort star graph nBS  under the MM* model is more 
than or equal to 4 7n − , i.e., 1( ) 4 7nt BS n≥ − . 
Proof.  By the definition of nature diagnosability, it is 
sufficient to show that nBS  is nature (4 7)n− -diagnosable. 

By Theorem 6, suppose, on the contrary, that there are 
two distinct  nature faulty subsets 1F  and 2F  of nBS  with 

1| | 4 7F n≤ −  and 2| | 4 7F n≤ − , but the vertex set pair 

1 2( , )F F  is not satisfied with any one condition in Theorem 
6. Without loss of generality, assume that 2 1\ .F F ≠∅  
Similarly to the discussion on 1 2( )nV BS F F≠ ∪  in Lemma 
5,  we can deduce that 1 2( )nV BS F F≠ ∪ . Therefore, 

1 2( )nV BS F F≠ ∪ . 
Claim I. 1 2nBS F F− −  has no isolated vertex. 

Suppose, on the contrary, that 1 2nBS F F− −  has at least 

one isolated vertex w . Since 1F  is a nature  faulty set, there 
is a vertex 2 1\u F F∈  such that u  is adjacent to w . Since 
the vertex set pair 1 2( , )F F  is not satisfied with any one 
condition 
in Theorem 6, there is at most one vertex 2 1\u F F∈  such 
that u  is adjacent to w . Thus, there is just a vertex u∈  

2 1\F F  such that u  is adjacent to w . Similarly, we can 
deduce that there is just a vertex 1 2\v F F∈  such that v  is 
adjacent to w  when 1 2\F F =∅/ . Let 1 2\ ( )nW S F F⊆ ∪  be 
the set of isolated vertices in 1 2[ \ ( )]n nBS S F F∪ , and let H  
be the subgraph induced by the vertex set 

1 2\ ( )nS F F W∪ ∪ . Then for any w W∈ , there are (2 5)n−  
neighbors in 1 2F F∩ . Since  2| | 4 7F n≤ − , we have 

1 2 1 2[( ) ]| ( ) | | | (2 5) ( ) 
n nBS F F W v F F BS

w W
N w W n d v∩ ∪ ∈ ∩

∈

= − ≤ ≤∑∑  

1 2 2| | (2 3) (| | 1)(2 3) (4 8)(2 3)F F n F n n n∩ − ≤ − − ≤ − − =  
28 28 24n n− + . It follows that 

28 28 24| | 4 3
2 5

n nW n
n

− +
≤ < −

−
 for 5n ≥ . Note 

1 2 1 2 1 2| | | | | | | |F F F F F F∪ = + − ∩ ≤  
2(4 7) (2 5) 6 9n n n− − − = − . Suppose ( )V H =∅ . Then 

1 2! | | | ( ) | | | | | 6 9 4 3 10n nn S V BS F F W n n n= = = ∪ + < − + − =
11− . This is a contradiction to 5n ≥ . So ( )V H ≠∅ . 
Since the vertex set pair  1 2( , )F F  is not satisfied with the 

condition (1) of Theorem 6, and any vertex of ( )V H  is not 
isolated in H , we induce that there is no edge between 
( )V H  and 1 2F FΔ . Thus, 1 2F F∩  is a vertex cut of nBS  and 

1 2( ( )) 1nBS F Fδ − ∩ ≥ , i.e., 1 2F F∩  is a nature cut of nBS . 
By Theorem 3, 1 2| | 4 8F F n∩ ≥ − . Because 1| | 4 7F n≤ − , 

2| | 4 7F n≤ − , and neither 1 2\F F  nor 2 1\F F  is empty, we 
have 1 2 2 1| \ | | \ | 1F F F F= = . Let 1 2 1\ { }F F v=  and 2 1\F F =  

2{ }v . Then for any vertex w W∈ , w  are adjacent to 1v  and 

2v . According to Proposition 5, there are at most three 
common neighbors for any pair of vertices in nBS , it 
follows that there are at most three isolated vertices in 

1 2nBS F F− − , i.e., | | 3W ≤ . 
Suppose that there is exactly one isolated vertex v  in 

1 2nBS F F− − .  
Let 1v  and 2v  be adjacent to v . Then 1 2( ) \{ , }

nBS
N v v v  

1 2F F⊆ ∩ . Since nBS  contains no triangle, it follows that 

1 1 2( ) \{ }
nBS

N v v F F⊆ ∩ ; 2 1 2( ) \{ }
nBS

N v v F F⊆ ∩ ; 

1 2 1[ ( ) \{ , }] [ ( ) \{ }]
n nBS BSN v v v N v v∩ =∅  and 

1 2 2[ ( ) \{ , }] [ ( ) \{ }]
n nBS BSN v v v N v v∩ =∅ . By Proposition 5, 

1 2| [ ( ) \{ }] [ ( ) \{ }] | 2
n nBS BSN v v N v v∩ ≤ . Thus, 1 2| |F F∩ ≥  

1 2 1 2| ( ) \{ , }| | ( ) \{ }| | ( ) \{ }| (2
n n nBS BS BSN v v v N v v N v v n+ + = −

5) (2 4) (2 4) 2 6 15n n n+ − + − − = − . It follows that 2| |F =  

2 1 1 2| \ | | | 1 6 15 6 14 4 7 ( 5)F F F F n n n n+ ∩ ≥ + − = − > − ≥ , 
which contradicts  2| | 4 7F n≤ − . 

Suppose that there are exactly two isolated vertices v  and 
w  in 1 2nBS F F− − . 
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Let 1v  and 2v  be adjacent to v  and w , respectively. 
Then 1 2 1 2( ) \{ , }

nBS
N v v v F F⊆ ∩ . Since nBS  contains no 

triangle, it follows that 1 1 2( ) \{ , }
nBS

N v v w F F⊆ ∩ , 

2( ) \{ , }nBS
N v v w   

1 2F F⊆ ∩ , 1 2 1[ ( ) \{ , }] [ ( ) \{ , }]
n nBS BSN v v v N v v w∩ =∅ and 

1 2 2[ ( ) \{ , }] [ ( ) \{ , }]
n nBS BSN v v v N v v w∩ =∅ . By Proposition 

5, there are at most two common neighbors for any pair of 
vertices in nBS . Thus, it follows that 1| [ ( ) \{ , }]

nBS
N v v w ∩ 

2[ ( ) \{ , }] | 1
nBS

N v v w ≤ . Thus, 1 2 1 2| | | ( ) \{ , }|
nBS

F F N v v v∩ ≥  

1 2 1 2| ( ) \{ , }| | ( ) \{ , }| | ( ) \{ , }|
n n nBS BS BSN w v v N v v w N v v w+ + +

(2 5) (2 5) 1 (2 5) (2 5) 1 8 22n n n n n= − + − − + − + − − = − . It 
follows that 2 2 1 1 2| | | \ | | | 1 8 22 8 21F F F F F n n= + ∩ ≥ + − = −  
4 7 ( 5)n n> − ≥ , which contradicts  2| | 4 7F n≤ − . 
Suppose that there are exactly three isolated vertices ,u v  

and w  in 1 2nBS F F− − .  
Let 1v  and 2v  be adjacent to ,u v  and w , respectively. 

Then 1 2 1 2( ) \{ , }
nBS

N v v v F F⊆ ∩ . Since nBS  contains no 

triangle, it follows that 1( ) \{ , , }nBS
N v u v w  1 2F F⊆ ∩ , 

2 1 2( ) \{ , , }
nBS

N v u v w F F⊆ ∩ , 1 2 1[ ( ) \{ , }] [ ( )
n nBS BSN v v v N v∩  

\{ , , }]u v w =∅ and 1 2 2[ ( ) \{ , }] [ ( ) \{ , , }]
n nBS BSN v v v N v u v w∩  

=∅ . By Proposition 5, there are at most three common 
neighbors for any pair of vertices in nBS . Thus, it follows 
that 1 2| [ ( ) \{ , , }] [ ( ) \{ , , }] | 0

n nBS BSN v u v w N v u v w∩ = . Thus, 

1 2 1 2 1 2| | | ( ) \{ , }| | ( ) \{ , }| | ( )
n n nBS BS BSF F N u v v N v v v N w∩ ≥ + +

1 2 1 2\{ , }| | ( ) \{ , , }| | ( ) \{ , , }| (2
n nBS BSv v N v u v w N v u v w n+ + = −

5) (2 5) (2 5) (2 6) (2 6)n n n n+ − + − + − + − 3 10 30n− = − . It 
follows that 2 2 1 1 2| | | \ | | | 1 10 30F F F F F n= + ∩ ≥ + − = 
10 29 4 7 ( 5)n n n− > − ≥ , which contradicts  2| | 4 7F n≤ − .  

Suppose 1 2\F F =∅. Then 1 2F F⊆ . Since 2F  is a nature 
faulty set, 2 1 2n nBS F BS F F− = − −  has no isolated vertex. 
The proof of Claim I is complete. 

Let 1 2( ) \ ( )nu V BS F F∈ ∪ . By Claim I, u  has at least 
one neighbor in 1 2nBS F F− − . Since the vertex set pair 

1 2( , )F F  is not satisfied with any one condition in Theorem 
6, by the condition (1) of Theorem 6, for any pair of 
adjacent vertices 1 2, ( ) \ ( )nu w V BS F F∈ ∪ , there is no 
vertex 1 2v F F∈ Δ  such that ( )nuw E BS∈  and ( )nvw E BS∈ . 
It follows that u  has no neighbor in 1 2F FΔ . By the 
arbitrariness of u , there is no edge between 

1 2( ) \ ( )nV BS F F∪  and 1 2F FΔ . Since 2 1\F F ≠∅  and 1F  is 
a nature faulty set, 2 1([ \ ]) 1

nBS
F Fδ ≥ . By Lemma 3, 

2 1| \ | 2F F ≥ . Since both  1F  and 2F  are nature faulty sets, 
and there is no edge between 1 2( ) \ ( )nV BS F F∪  and 1 2F FΔ , 

1 2F F∩  is a nature cut of nBS . By Theorem 3, we have 

1 2| | 4 8F F n∩ ≥ − . Therefore, 2 2 1 1| | | \ | |F F F F= +   

2 | 2 (4 8) 4 6F n n∩ ≥ + − = − , which contradicts  

2| | 4 7F n≤ − .  Therefore, nBS  is nature 
(4 7)n− -diagnosable and 1( ) 4 7nt BS n≥ − .  The proof is 

complete. 
Combining Lemmas 6 and 7, we have the following 

theorem. 
Theorem 7.  Let 5n ≥ . Then the nature diagnosability of 
the bubble-sort star graph nBS  under the MM* model is 
4 7n − . 
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